本文目录一览:
矩阵的逆矩阵怎么求
一般情况下我们求逆矩阵
都是使用初等行变换的方法
即(A,E)通过初等行变换之后得到(E,B)
此时B就是A的逆矩阵A^-1
初等行变换的过程中可以有
交换两行,某行乘以非零常数,或者某行加上别的行乘以非零常数
矩阵的逆矩阵求法
求矩阵的逆矩阵
通常都会使用初等行变换的方法
即(A,E)~(E,B)
那么B就是A的逆矩阵
或者使用A^(-1)=A*/|A|的方法
那样比较麻烦一些
已知一个矩阵,怎样求它的逆阵
运用初等行变换法。具体如下:
将一n阶可逆矩阵A和n阶单位矩阵I写成一个nX2n的矩阵B=[A,I] 对B施行初等行变换,即对A与I进行完全相同的若干初等行变换,目标是把A化为单位矩阵。当A化为单位矩阵I的同时,B的右一半矩阵同时化为了A的逆矩阵。
如求
的逆矩阵
故A可逆并且,由右一半可得逆矩阵A^-1=
扩展资料:
逆矩阵的性质:
1、可逆矩阵一定是方阵。
2、如果矩阵A是可逆的,其逆矩阵是唯一的。
3、A的逆矩阵的逆矩阵还是A。记作(A-1)-1=A。
4、可逆矩阵A的转置矩阵AT也可逆,并且(AT)-1=(A-1)T (转置的逆等于逆的转置)。
5、若矩阵A可逆,则矩阵A满足消去律。即AB=O(或BA=O),则B=O,AB=AC(或BA=CA),则B=C。
6、两个可逆矩阵的乘积依然可逆。
7、矩阵可逆当且仅当它是满秩矩阵。
怎样求一个矩阵的逆矩阵?
一般有2种方法。
1、伴随矩阵法。A的逆矩阵=A的伴随矩阵/A的行列式。
2、初等变换法。A和单位矩阵同时进行初等行(或列)变换,当A变成单位矩阵的时候,单位矩阵就变成了A的逆矩阵。
第2种方法比较简单,而且变换过程还可以发现矩阵A是否可逆(即A的行列式是否等于0)。
伴随矩阵的求法参见教材。矩阵可逆的充要条件是系数行列式不等于零。
初等矩阵的逆矩阵怎么求的?要过程。。谢谢大神
1、行交换(列交换)的初等矩阵矩阵的逆矩阵,逆矩阵还是本身矩阵的逆矩阵;
2、某一行(或列)乘以一个倍数的初等矩阵,逆矩阵,是这一行(或列)除以这个倍数的初等矩阵;
3、某一行(或列)乘以一个倍数,加到另一行(或列)的初等矩阵,逆矩阵,是这一行(或列)乘以这个倍数的相反数,加到另外那一行(或列)的初等矩阵。
初等矩阵的逆矩阵其实是一个同类型的初等矩阵(可看作逆变换)。例如,交换矩阵中某两行(列)的位置;用一个非零常数k乘以矩阵的某一行(列);将矩阵的某一行(列)乘以常数k后加到另一行(列)上去。
扩展资料矩阵的逆矩阵:
初等行变换不影响线性方程组的解,也可用于高斯消元法,用于逐渐将系数矩阵化为标准形。初等行变换不改变矩阵的核(故不改变解集),但改变了矩阵的像。反过来,初等列变换没有改变像却改变了核。
有的时候,当矩阵的阶数比较高的时候,使用其行列式的值和伴随矩阵求解其逆矩阵会产生较大的计算量。这时,通常使用将原矩阵和相同行数(也等于列数)的单位矩阵并排,再使用初等变换的方法将这个并排矩阵的左边化为单位矩阵,这时,右边的矩阵即为原矩阵的逆矩阵。
参考资料来源:百度百科——初等矩阵
求矩阵的逆矩阵怎么算?
求逆矩阵需要先求出矩阵矩阵的逆矩阵的模以及其伴随矩阵,然后伴随矩阵÷矩阵的模就是逆矩阵,伴随矩阵的定义及此题的结果如下:其中5为矩阵的模,后面的矩阵为此矩阵的伴随矩阵矩阵的逆矩阵;
希望能帮到矩阵的逆矩阵你,望采纳。如有不懂可追问。